1)
a)
∃x∈X.S(x)∧A(x)
b)
∀x∈X.T(x)∧S(x)⟹A(x)
c)
∀x∈X.¬T(x)∧¬A(x)
d)
∃x∃y∃z(¬E(x,y)∧¬E(x,z)∧¬E(y,z)∧(T(x)∧¬S(x))∧(T(y)∧¬S(y))∧(T(z)∧¬S(z)))
a)
First I'll evaluate the left hand side, then I'll evaluate the right hand site of the equation
Left hand side:
right hand side:
So this statement is true:
¬(P∨(Q∧R))=(¬P)∧(¬Q∨¬R)
a)
∃x∈X.S(x)∧A(x)
b)
∀x∈X.T(x)∧S(x)⟹A(x)
c)
∀x∈X.¬T(x)∧¬A(x)
d)
∃x∃y∃z(¬E(x,y)∧¬E(x,z)∧¬E(y,z)∧(T(x)∧¬S(x))∧(T(y)∧¬S(y))∧(T(z)∧¬S(z)))
2)
a)
First I'll evaluate the left hand side, then I'll evaluate the right hand site of the equation
Left hand side:
Q |
R |
Q∧R |
---|---|---|
true | true | true |
true | false | false |
false | true | false |
false | false | false |
P |
Q∧R |
P∨(Q∧R) |
¬(P∨(Q∧R)) |
---|---|---|---|
true | true | true | false |
true | false | true | false |
false | true | true | false |
false | false | false | true |
¬Q |
¬R |
Q∨R |
---|---|---|
false | false | false |
false | true | true |
true | false | true |
true | true | true |
¬P |
Q∨R |
(¬P)∧(¬Q∨¬R) |
---|---|---|
false | false | false |
false | true | false |
true | false | false |
true | true | true |
This equation could also have been solved with De Morgan's law. De Morgan's law was explained in my previous post already.
No comments:
Post a Comment